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B R E A K I N G  O F  G R A V I T Y  W A V E S  IN  T H E  M O T I O N  

OF A V E R T I C A L  P L A T E  I N  A T W O - L A Y E R  L I Q U I D  

V. I. B u k r e e v  UDC 532.59 

Results of ezperimental studies of surface and internal waves generated by translational motion 
of a vertical plate covering the entire cross section of the channel are discussed. It is found that 
the waves do not break at the critical propagation speeds predicted by the linear theory or the 
first approzimation of shallow water theory. Breaking begins only at higher propagation speeds, 
at which the stabilizing effect of wave dispersion ceases. Quantitative information is given that 
can be used to test mathematical models and numerical methods. 

When waves break, the ordered motion becomes partially chaotic. In this respect, breaking of waves 
is similar to laminar- turbulent  transition. At the same time, unlike the turbulence problem, the transition of 
smooth waves to breaking waves has received little attention. The  author  is aware of just one mathematical  
model [1] that  describes this transition. 

The present paper reports results of an experimental s tudy of changes in the wave pat tern for a two- 
layer liquid of finite depth when the wave-propagation speed passes through the four possible critical values. 
The conditions under which the waves break are specified, the role of stabilizing and destabilizing factors is 
discussed, and the changes in the  propagation speed and height of the waves during breaking is analyzed. 
Similar data for a liquid of uniform density are given in [2-5]. 

1. For a homogeneous liquid at rest above an even horizontal bot tom,  theoretical analysis gives two 
characteristic values of the  propagation speed c of plane gravity waves. The  value cl = x / ~  (g is the 
acceleration of gravity and h is the initial depth of the liquid) is predicted by the linear theory as the 
limiting propagation speed of small harmonic perturbations. In transition to a region in which c > cl, the 
waves can break or retain smoothness. In the experiments of [2-5], the waves remained smooth and their 
instability manifested itself only in the fact that  weak oblique waves, whose growth was suppressed by surface 
tension, arose against the  background of the main plane wave. The  value c2 = v / ~  is predicted by the 
second approximation of shallow water theory as the limiting speed of propagation of cnoidal (in particular, 
solitary) waves [6]. The  more accurate value c2 = 1.294 V ~  is obtained on the  basis of the complete model 
for potential liquid flow [7, 8]. 

The ambiguity of the  characteristic speed makes it necessary to specify the  terminology, which has 
not been universally accepted even for cl. The most universal name of cl - -  the critical speed - -  is used in 
hydraulics. Its other names reflect a certain feature of the response of the system and are more "narrow." 
It has been suggested [5] tha t  cl be called the first critical speed of propagation of gravity waves on shallow 
water and c2 the second. 

The experiments of [4, 5] confirmed the second of the indicated theoretical values of c2 and showed 
that  this speed is critical not only for solitary waves but  also for waves of a more general type. In the vicinity 
of this speed, wave dispersion, a strong stabilizing factor, ceases to prevent destructive tendencies even when 
the nonlinearity is weak. Stabilizing factors such as nonstationari ty or surface tension also turn out to be tess 
effective. In the experiments,  waves with speeds c > c2 invariably break. 
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Fig. 1. Diagram of experiment: 1) plate; 2) bo t tom of the tank. 

In the case of a two-layer liquid with a free surface there are two modes of natural  vibrations: surface 
and internal. For each of them,  at least two critical speeds exist. Theoretically, a pair of speeds similar in 
sense to cl is found from the dispersion relation of the linear theory of c(k) for k ~ 0 (k is the wavenumber 
of linear harmonic perturbat ions)  [6]: 

Here the first figure of the subscript indicates the free-boundary number  and the second indicates the critical- 
speed number (the plus sign and the subscript 2 correspond to the surface wave), H = hi + h2, ,~ = p2/pl, 
where hi and pl are the  initial depth and density of the lower liquid and h2 and p2 are those for the upper 
liquid. The  liquids do not mix with each other. The influence of viscosity and interface tension is not taken 
into account. From (1.1) it follows that  the same value c~ = ~ is obtained in all the  three limits: hi ---, 0, 
h2 --* 0, and ~ --. 0. The  initial s tate with $ > I is unstable by the Rayleigh-Taylor mechanism. For 0 < $ < 1, 
we have c11 < c21 < c~. 

Rigorous formulas for c12 and c22 are not available at present. Therefore, in planning experiments, one 
has to use approximate relations. The  goal of the present work is to s tudy the behavior of the waves in the 
vicinity of the highest critical speed c22. To estimate this quantity, we used the  following line of reasoning. 

In practice, one has to deal with two droplet liquids for which )~ is in the  range of 0.8 to 1 or with 
a droplet liquid and a gas when )~ << 1. In the second case, C l l  "-r 0 and c21 ~ v/g'h'~, i.e., the influence of 
the difference in density on the  first critical speed is insignificant and can be ignored. From the experiments 
of [4, 5] it follows tha t  this conclusion is also valid for the second critical speed of the surface mode. The 
experiments were carried out  for )~ = 0.8. Analysis of (1.1) shows that  the  most  significant effect of the 
difference in density takes place for h2/hl = 1. In this case, Cll = 0.224 ~ and c21 = 0.975 v f ~ / ,  i.e., the 
effect of the difference in density is pronounced for the internal mode,  whereas c21 differs from c~ by only 
2.5%. As $ approaches 1, czl differs little from c~. 

In view of the aforesaid, c22 was tentatively evaluated from the formula 

where 

C22 - ~  1.294ct CgH,  (1.2) 

a ~  ~' 1-1- 1 -  H-~ ' .  

Formula (1.2) was also used to normalize experimental data. 
2. A diagram of the experiment  is shown in Fig. 1. A rectangular tank (3.8 x 0.2 m) with a horizontal 

bot tom was filled with water (pl = 1 g / cm 3 and the kinematic viscosity vl = 0.0101 cm2/sec) and kerosene 
(p2 = 0.8 g / cm 3 and v2 = 0.0182 cm2/sec). In an analysis of the stability of surface waves and the energy 
losses due to breaking of them,  it is necessary to take into account tha t  in the experiments the third medium - -  
air under normal laboratory conditions - -  was also present. The  stability of the waves is strongly affected 
by interfacial tension on the  boundary of contact between the different media. In particular, if interfacial 
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Fig. 2. Law of motion of the plate and variation of 
levels on it: law of motion (curve l), free-surface level 
(curve 2), and interface level (curve 3). 

tension is ignored, an arbitrarily small difference in speed on the contact boundary leads to development of 
the Kelvin-Helmholtz instability. In the experiments, the coefficients of interfacial tension between water and 
kerosene al  and between kerosene and air a2 were 40 4- 6 and 27 4- 0.2 erg/cm 2, respectively. This ensured the 
Kelvin-Helmholtz stability up to a difference in speed of 15-20 cm/sec.  

In the initial state, the  liquid was at rest. At the moment  t = 0, the vertical plate 1 began to move 
along the z axis, and at t = T2, it suddenly stopped. The  fixed coordinate system is shown in Fig. 1. The 
coordinate origin is on the line of intersection of the frontal plane of the plate with the bo t tom of the tank at 
t = 0. The plate covered the  entire cross section of the tank. This particular case of submersion of the plate 
was studied to minimize the  number  of parameters of the introduced perturbation.  The  same purpose was 
pursued in the  choice of the  law of motion of the plate z . ( t ) ,  where z .  is the coordinate of an arbitrary point 
on the plate. 

Figure 2 (curve 1) gives an example of the law of motion of the plate obtained by filming. The  following 

designations are adopted: ~* = x . / H  and r = t 9 ~ / ~ .  The experimental points are well approximated by the 
dependence 

Ut + UTl[exp(-t /T1) - 11 for 0 ~< t < T2, (2.1) z . =  l for t>>,T2, 

where U, T1, T2, and I are parameters,  among which only any three are independent .  Below, U, T1, and T2 
are used as the main parameters.  A two-parameter law of motion is realized in [4]. In experiments, a further 
reduction in the number  of parameters is impossible. 

The main quantities studied were the fluctuations of the interface yl and the free surface y2 (see Fig. 1). 
Before the loss of stability, these quantities depended on z, t, and the parameters listed above. In the 
experiments U, T1, T2, and h2/hl were varied. The remaining parameters,  including H = 4.8 cm, were 
not varied. The  quantities yl and Y2 were recorded by filming with a frequency of 32 frames per second. For 
the quantitative information presented below, the standard deviation of the error did not exceed 2% for the 
surface-wave speed and 3% for their height, and the corresponding characteristics for the internal waves were 
3 and 4%, respectively. 

3. Typical results of the  experiments are given for the following combination of the main parameters: 
H = 4.8 cm,  h2/hl = 1, $ = 0.8, U / x / ~  = 0.49, 7"1 = T1vf-g/H = 2.0, and r2 = T2 g ~ r ~  = 11.1 
(l* = l /H = 4.42). Figure 2 shows the law of motion of the wall precisely for this case. Graphs of the increase 

661 



1.5 

1.0 

0.5 

2b 

~*' 10 15 

c/%2 
1.0 

0.8 rim1. qm~ 
a |  

I 
j r/mr o.o.o-0-o-~ 1.0 

0.s  

0.4 / 

I I  I 0.5 
I I  I tlm l 

g t ! ,  , , o 
o 5 Io is 

Fig. 3 Fig. 4 

Fig. 3. Wave profiles before and after breaking: curves la and lb refer to t/m1 and curve 
2a and 2b refer to z/ra2; T = 12.0 (curves la and 2a) and 15.6 (curves lb  and 2b). 

Fig. 4. Propagation speeds and heights of waves: curves a and t/m] for the internal wave 
and curves b and t/,,2 for the surface wave. 

in the levels of the free surface (curve 2) and the interface (curve 3) directly on the wall are also given in the 
figure. The following designations are adopted: tl[ = (9~ - y l o ) / H  a n d  tl~ = (y~ - y20)/H, where y~ and y~ are 
the ordinates of the interface and the free surface at x = x, and Y]0 and y20 are the same quantities for the 
state of rest. Until the stop of the plate (~ < ~) ,  t/~ and T/~ remained smooth. At ~ > r2, their behavior became 
chaotic as a result of the drastic change of conditions on the plate due to its sudden stop. It is possible that 
at small distances downstream of the plate, loss of stability proceeds simultaneously by different mechanisms, 
including instabilities at lower critical speeds. Visually, here we observed the entrainment of air in kerosene and 
mixing of water and kerosene. At a certain distance from the stopped plate, the Kelvin-Helmholtz instability 
began to develop on the back slope of the internal wave. Nonstationarity and interfacial tension suppressed it, 
and the wave became smooth until the speed of propagation of its leading edge reached c22. Then, breaking 
of the surface wave began, and the internal wave remained smooth until complete degeneration. 

Figure 3 shows profiles of the surface wave and the internal wave at two times after the stop of the plate 
(tll = y l / H ,  t12 = y 2 / H ,  and ~ = x / H ) .  The speed of propagation of the leading edge of the perturbation 
(curves la  and 2a) had just reached c~ from below, and the perturbation speed entered the supercritical 
region (curves lb  and 2b). In the interval ~* < ~ < 6, entrainment of air in kerosene and mixing of water 
and kerosene occurred. In the intervals 6 < ~ < 8 and 6 < ~ < 12, the Kelvin-Helmholtz instability was 
manifested for both waves (curves la  and lb, respectively). 

Weak oblique waves were observed behind the leading edge, on the "free surface, and on the interface. 
The occurrence of oblique waves is a manifestation of the loss of stability. It is possible that  the presence 
of t h e e  waves is due to the fact that during evolution the perturbation intersected the boundary c = c21. 
Nonstationarity, dispersion, interfacial tension, and viscosity prevented development of instability on this 
boundary to the breaking stage. However, it is possible that precisely oblique waves were those perturbations 
that led to breaking of the main wave in intersecting the boundary c = c22. 

Since the waves were nonstationary, it is necessary to specify the definition of their propagation speed c. 
Further, as c we use the speed of longitudinal motion of that point of the leading edge whose departure from 
the equilibrium position is equal to r/,,,/2, where r/m is the height of the first crest (Fig. 3). In this case, the 
speeds of propagation of other points of the leading edge differed from c by not more than 2%. 

The dependence of c on ~ is given in Fig. 4. For ~ > 7, the difference in c between the surface wave 
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TABLE 1 

h2/hl c2E/c22 

0 1.00 

0.1 1.10 

0.2 0.99 
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h2/hl 
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C2E/C22 
0.99 

0.97 

1.01 

1.02 

Fig. 5. Photographs of the head part of waves in the initial stage of breaking (a) 
and for fully developed breaking (b): 1) tank bottom; 2) interface; 3) free surface. 

and the internal wave was within the limits of the measurement error. Filming showed that the transition 
of smooth to breaking surface waves proceeded on the interval A~. Breaking began when c reached c22 from 
below. Entry to the region c > c22 occurred only after the breaking had become fully developed. 

When the parameters, in particular, the acceleration of the plate, were varied, the behavior of the 
system differed from the one discussed above. In particular, in the region c > c22, the waves could also 
retain smoothness for some time. However, gradually, the speed of propagation of smooth waves reached 
a local maximum, then decreased to c22, and finally breaking began. After completion of this process, the 
propagation speed could grow again. 

Figure 4 shows data  on the heights of the first wave crests •ma and rim 2. Unlike the propagation 
speed, this wave parameter does not undergo characteristic changes in the critical state and continues to grow 
monotonically during transition of smooth to breaking waves. It reaches the largest value in the stage of fully 
developed breaking, and the value of the corresponding maximum strongly depends on the wave shape. For 
example, according to the theory of [7, 8], the limiting height of a solitary wave on a free surface is equal to 
0.827 of the initial depth. For waves of a more general type in the experiments of [4, 5], their limiting heights 
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TABLE 2 

~o 
0 

1 

1 . 9  

2 

3 
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5 . 8  
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1 1 . 9  

12 

13 

14 

15 

16 

r = 5 . 8  r =  11.3 I v = 14.2 

~ ' =  1.86 { ~~ 

r = 15.8 

72 

1.02 

1.00 

0.96 

0.98 

1.14 

1.29 

1.38 

1.44 

1.64 

1.47 

1.44 

1.61 

1.94 

1.69 

1.23 

1.11 

1.09 

1.03 

were both greater and lower than the indicated theoretical limiting height of a solitary wave. In Fig. 4, the 
dimensionless limiting heights of the surface wave reaches unity, and at the beginning of the breaking process, 
it is qm2 = 0.85. 

Figure 5 shows photographs of the wave heads in the initial stage of breaking and at the stage 
of fully developed breaking of the surface wave. The internal wave in Fig. 5b remains smooth, although 
its speed exceeds c22. It retains smoothness up to complete attenuation of vibrations in the tank. This 
internal wave is generated by the surface wave and can be treated as an induced wave. In addition, it is 
not stationary. Therefore, the question of the existence of smooth stationary free waves with c > c22 remains 
open. Nevertheless, the above example of a smooth internal wave with c > c22 is interesting, because necessary 
conditions for retention smoothness are developed by the dynamic system itself rather than by a specially 
selected external action. 

To analyze the influence of the parameter A on surface waves, we performed additional experiments 
with homogeneous liquids: water and kerosene. Qualitatively, the wave pattern was identical, other conditions 
being equal. But the critical speeds c2 were attained at smaller x for water than for kerosene (by about 10%). 
For a two-layer liquid, the critical situation occurred for intermediate values of x. 

Table 1 illustrates the effect of the parameter h2/hl  on the ratio c2E/c22, where C2E is measured 
experimentally and c22 is calculated by formula (1.2). On the whole, the difference between the experimental 
and calculated data is within the limits of the measurement error. An exception is the case of a very thin 
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upper layer (0.44 cm), where the experimental critical speed exceeds the calculated speed by 10%. Probably, 
this is due to the fact that for such a small distance between two free boundaries, the total effect of interracial 
tension on each of them increased stability. 

Table 2 lists data on the wave profiles q1(~0) and r/2(~0) for four fixed values of r. As before, time 
is reckoned from the beginning of motion of the plate, and the longitudinal coordinate is reckoned from its 
current position, so that ~0 = ~ - ~*. Values of ~* are given in the Table 2. The values of (0 for which r/2 = 7/,,~2 
are bold. The values of the main parameters are the same as those in Fig. 3. At r = 5.8, the plate moved. The 
other data are obtained for free waves. At r = 11.3, the waves remained smooth. At r = 14.2, breaking of 
the leading edge of the surface wave occurred, and at r = 15.8, breaking of the surface wave was completely 
developed. 

On the whole, the results of the experiments confirmed the hypothesis that for each mode of natural 
vibrations of the liquid, besides the well-known critical propagation speed at which wave breaking can occur, 
there is at least one even more critical speed. The quantitative value of the latter can be evaluated from the 
limiting speed of propagation of solitary waves. An example is given where.one of the two free boundaries of a 
two-layer liquid retained smoothness in the supercritical region owing to nonstationarity, interfacial tension, 
and viscosity. 
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